
Chapter Three
Advanced Technologies for Display and Database Automation

3.1 Summary

The objective of this activity was to investigate advanced technology tools for transferring data into the
Flight Standards Service (AFS) databases. A detailed study of the AFS database systems and the manner
in which the Aviation Safety Inspectors (ASI) interacted with these database systems was completed in
Chapter One. Based upon the results of this study, several advanced technology tools were identified and
investigated. These technology tools included optical character recognition, personal digital assistants,
and speech recognition. Each will be explained in detail in this report.

3.2 Optical Character Recognition

The data an ASI collects follows a circuitous path before it is entered into the appropriate AFS national
database. Most ASIs today collect data during an inspection or investigation using brief notes written
down on a notepad. When they return to the office they fill out the appropriate form(s) referring to the
written notes from their note pads and their memory. The data from these forms is then entered into a
local database at the office, often by a data entry clerk. This is a time consuming process that is prone to
data entry errors of omission and commission. Time and money would be saved and data integrity would
be improved if the number of times the data were handled was minimized. At some time in the future it is
planned that the handling of the data would occur once using a single point entry job aid like the
Inspectors Field Kit (IFK). Unfortunately this will not occur in the near future for all AFS offices. In the
mean time, an optical character recognition application would provide the means to reduce the number of
times the data were handled. With the help of it, data can be input into the computer by scanning the raw
data directly from the initial form. This study was undertaken to find out how accurate this technology
can be and what configuration(s) of software and hardware should be used to obtain the best results. The
process and the results of the study are discussed below.

Various Optical Character Recognition software products were investigated for this activity. We
identified 36 different OCR packages that were currently available. Features such as handwriting
recognition, form removal, image enhancement options, and de-skew capability were identified as
minimal OCR capabilities. In order to be compatible with the IFK we also looked for the ability to
support industry standard programming languages (Visual Basic and C) within the Microsoft Windows
operating environment. This would allow an OCR application to be tightly integrated into existing, as
well as future, AFS systems. These requirements reduced the number of potential products to 12. Many
of these had features that were not applicable to the proposed AFS office environment such as form
creation utilities, stand alone receive and send FAX capability, batch scanning and classification
algorithms, and graphic editing capabilities. The cost of these additional features was not deemed
necessary just to get the basic required OCR capabilities. After reviewing product information and trade
journal reviews, OMNItools by Nestor Products was purchased and evaluated.

As with all technology assessment activities, this review of products is current as of March, 1995. The
introduction of new technologies is continuous and a better product may be available in the near future.
We will continue to remain cognizant of these new systems as they are introduced.

OmniTools

OmniTools, developed by Nestor Incorporated, accurately recognizes hand-written and machine-printed
characters from scanned or faxed images. In addition to character recognition, the system identifies
documents, resizes and straightens incoming faxes, removes preprinted forms, automatically detects hand-
printed and machine-printed words, reads optical mark (check box) entries, and provides several output
options including alternate choice characters. It provides an Application Program Interface (API) for
industry standard programming languages, such as Visual Basic, and also allows handwriting recognition
solutions to be developed from Access, Excel, Foxpro, Lotus 123, and Paradox.

3.2.1 Recognition Process

The process of handwriting recognition using this product includes five steps: (1) preparing an image file,
(2) defining a zone definition form, (3) performing the actual recognition, (4) displaying the results and
(5) verifying the results. Except for the last, all of the steps can be done with the OMNItools software.

3.2.1.1 Preparation of Image Files

Since OMNItools cannot prepare image files, a basic scanning product was used to create the image file.
This file contains the image of the hand-writing and form that will be recognized. An image can be
captured by a camera, a scanner, or some other devices. All the image files used in this study were
created using the Hewlett-Packard ScanJet IIc scanner and the Deskscan II software1. Using this
hardware and software combination, three attributes of the resulting image could be modified: image file
format, brightness, and resolution. These attributes are commonly available to most scanners, and are
discussed in detail below.

http://localhost/HFAMI/lpext.dll?f=FifLink&t=document-frame.htm&l=popup&did=FAA%20Research%201989%20-%202002%2FInfobase%2F24cb%2F53a6%2F54f0&sub=12p1

Image file format

OMNItools accepts either Paintbrush or Bitmap format files. Preliminary testing indicated that there was
no difference in recognition accuracy between these two file types. Since the size of a Paintbrush file is
usually four to five times smaller than the size of a Bitmap file, the image files were stored in a
PaintBrush file format. The number of colors used in a PaintBrush file can also be set. Two color (black
and white) PaintBrush files were used for all the tests in this study. The reason for this decision is that
OMNItools has difficulty interpreting PaintBrush files that contain more than two colors.

Brightness

The Brightness attribute controls the contrast of an image. It is similar to the brightness control used in a
photocopier. The darker you set the brightness attribute, the more details you can see. The range of the
brightness scale for a ScanJet IIc scanner is from 0 (darkest) to 255 (lightest). By trial and error, two
values, 80 and 150, were chosen to be used in this study. When the brightness is set to a value of 80, the
scanned image is clear and sharp for both dark and light color lines. When the brightness value is set to
150, dark color lines appear clearly, while light color lines are not visible.

Resolution

The resolution is determined by the number of dots per inch (dpi) used to represent an image. In
DeskScan II, the dpi setting can be set as low as 12 dpi or as high as 1200 dpi. A setting of 100 dpi
resolution was used in the beginning. It was quickly determined that this value was too low because the
image quality was very poor. A setting of 300 dpi was found to be the lowest setting that produced a high
quality image for character recognition in the image file.

The density of data on the original form is also very important. The data density cannot contain too much
data when the image is processed. How much is too much was determined empirically. When the form's
data density was too high, an error message "Image is too large and complex" would be displayed. This
phenomena was discovered during the initial familiarization period. This situation did not occur during
the actual evaluation.

It warrants repeating that the brightness and the resolution attributes discussed above are specific to the
scanner. They are not part of the OMNItools. Readers must keep this point in mind when these scanner
settings are discussed in context of the OMNItools attributes.

3.2.1.2 Form Definition

A zone definition form (ZDF) file contains information of how OMNItools should recognize the image.
The specific area or zone on the form that will contain data must be identified. You can also specify more
information about each zone and about the whole form so that the software can carry out a more accurate
recognition. There are three kinds of zones which can be defined in a ZDF file: registration zone, data
zone, and optical mark recognition (OMR) zone.

Registration zone

This zone defines static information that can be deleted from the scanned image using a feature called
Form Removal. Using a common tax form as an example, OMNItools would be able to remove those
printed boxes, lines, and characters from the tax form as the scanned image was being processed. It
would read the tax form as if it only contained the hand-writing of the author. To use Form Removal,
registration zones have to be defined and two forms must be supplied: one blank form (called Master
Form) and one form filled with data (Data Form). The registration marks are used as anchors between the
Master Form and the Data Form so that the static data can be removed accurately.

Also, through trial and error it was found that 1)Form Removal worked best if the registration marks were
some simple shapes like small, filled-in squares and 2)Locating the registration marks close together at
the top third of the page provided the most accurate combination for the Form Removal feature to
function properly. Locating these marks was not an easy task. It was discovered that characters or
complex graphics cannot be used as registration marks. This would result in an error saying "Can't find
the registration mark".

Define data zones

Data zones are areas which contain the hand writing that needs to be recognized. A single form can
contain multiple data zones. Several attributes can be defined for each data zone, each of them intended
to specify the number/type of characteristics within a data zone which would result in a higher rate of
recognition accuracy. The attribute options available are:

I) Hand print / Machine print.

 Specifies whether the zone contains hand-writing, machine-print characters, or both.

II) Characters Per Inch (CPI)

 A data string typically has a constant letter spacing. If the number of characters per inch is known in
advance, it can be specified so that the software will locate each character more accurately.

III) Punctuation Marks

 Some data strings may or may not contain punctuation marks. Setting attribute "Containing
Punctuation" to "none" will reduce the possibility of recognizing some characters as punctuation marks if
no punctuation exists.

IV) Single Word, Single/Multiple Lines

 The data format may be in one word, one line, or multiple lines. This option may help to eliminate
recognizing extra spaces and recognizing one character as two.

V) Checking Context

 If this is set, OMNItools uses an expert system for grammar in an attempt to guess the next character
based on the context of the words if there is any uncertainty about that specific character. For instance, if
the software is not sure whether the character is a 'v' or 'u' following a 'q', it would identify the character to
be a 'u' because of higher grammatical probability.

VI) Define Dictionary.

 A Dictionary can be used (or defined) to restrict the word for a specific zone. For instance, suppose a
data zone is restricted to a dictionary that is defined as containing only two words ("MALE" and
"FEMALE"). If, for example, a word "MALA" (or anything similar) was recognized, the word will be
changed to "MALE" because of the dictionary constraint.

VII) Character constraint

 It is usually known in advance what type of characters will appear in a data zone. For example, A-Z,
and/or 0-9, or some unique combination are valid ranges.

Optical Mark Recognition (OMR) zones

These zones are areas on the form designated for check boxes. It can be chosen to be either a single radio
box or a multiple choice group.

Form level information

There are some attributes which would affect the whole form. These options are:

I) Form Removal - ON/OFF

 If this option is set, the static data will be removed from the image.

II) Remove long lines - ON/OFF

 If this options is set, all the long lines will be removed.

III) Restore/de-skew image - ON/ OFF

 If this option is set, OMNItools will try to restore image by de-skewing some lines that may have been
skewed during the process of capturing the image from the source.

IV) Drop-out ink - ON/OF

 This option tells OMNItools whether the image to be recognized contains drop-out ink or not.

V) Result file format - ON/OFF

 Result file format can be text, text with quotes, or ZRF (file format defined by OMNItools). If the
results are going to be verified using the OMNItools, the result file format has to be in Zone Recognition
File (ZRF) format.

3.2.1.3 Recognition

The actual recognition can be done by specifying the image file and the ZDF file. It usually takes less
than 10 seconds to finish one recognition with about 100 characters using a Pentium-90 machine.

3.2.1.4 Results Display

OMNItools provides a tool to view the ZRF file. It can display the results of all the data and OMR zones
in a scrollable window. It can be chosen to show how accurate the recognition was for each character.
Threshold confidence levels can be set such that it will only show the recognized character if the
confidence level is higher than the specified value. Using this tool, results can also be stored in a plain
text file or copied to other Windows' application.

3.2.1.5 Verification

The verification tool allows users to see the recognition and the original data at the same time. This
allows the users to compare the results visually and correct any mistakes made by the software. As
mentioned before, the results have to be stored in ZRF file in order to use this tool. The modified results
can also be stored in the same ZRF file.

3.2.2 Methodology

3.2.2.1 Data Preparation

A modified version of the standard AFS form, Program Tracking and Reporting System (PTRS), was
used for all the tests. This form was created using a software application called VISIO. There are a
number of modifications made to the basic form in order to be suitable to be tested. Four registration
zones were defined. Data fields were enlarged to have a density of 6 CPI. Letters within any check box
were removed to avoid any confusion between these letters and the actual hand-writing. The gray scale of
boxes that surrounded the data fields were set to be the lightest shade available in the VISIO application.
This was done to minimize the interference with the recognition process. The modified PTRS form is
shown in the Appendix.

3.2.2.2 Data Collection

Ten Galaxy Scientific Corporation employees participated in this study. A sample form and a blank form
were given to each participant. They were instructed to copy the information from the sample form to the
blank for in their own handwriting. The sample form contains five class of data that included every
recognizable character:

1) Uppercase : three sets of upper case alphabets (A-Z)

2) Lowercase : three sets of lower case alphabets (a-z)

3) Digits : five sets of digits (0-9)

4) Special : three sets of special characters ("$()+-/")

5) Checkmark : thirty-six check mark zones

There are a number of attributes can be changed in the ZDF file that were discussed in previous section.
Some of these attributes remained fixed for the study while others were varied. The following section
lists the fixed and variable attributers.

Fixed attributes:

I) Hand print / Machine print.

 Handprint was used throughout the entire study.

II) Punctuation

 No data will contain any punctuation.

III) Single line

 All data was regarded as single line data.

IV) No context checking

 The sample characters were listed alphabetically, therefore context was not used.

V) No dictionary defined

 For the same reason as above, no dictionary was defined.

VI) No drop-out ink

 No drop-out ink was used.

VII) Result file format

 Text file format was used.

Variable attributes:

I) Form Removal

 The options tested were On or Off. The static data was removed from the image if "On" was selected.

II) Remove long lines

 The options tested were On or Off. If " On" was selected then all the long lines were removed.

III) Restore/de-skew image

 The options tested were On or Off. This attribute can only be used when Form Removal is "Off",
otherwise the error message "Can't find the registration mark" would occur.

VI) Character constraint

 This attribute only applies for the data zone. There are two kinds of constraints used in the tests:
restricted constraint and relax constraint. For the restricted constraint option, the data zone was restricted
to one of three settings:

• alphabetic characters defined to be from A and Z;
• digits defined to be from 0 and 9;
• special characters defined to be anything (A-Z,0-9,$()+-/).
For relax constraint option, every data zone was defined to recognize all characters.

V) Characters per inch (CPI)

 This attribute only applies to the data zone. It can be set to any positive value. The data form was
originally designed for a character spacing of 6 CPI. Therefore this option was set to either 6 CPI or 0
CPI for these tests. The 0 CPI option means that the characters per inch attribute is undefined. In other
words, the software has to locate the characters by itself.

VI) Brightness of the image

 The options tested were 80 or 150.

There are a total of 48 possible combinations for above attributes. Table 3.1 illustrates the options more
clearly:

Table 3.1 Options

 Attributes Options

 Characters per inch 0 (Undefined) 6

 Form Removal Yes No

 Remove Long Lines Yes No

 Restore/de-skew image Yes No

 Character Constraint Restricted Relaxed
 (A-Z or 0-9) (all characters)

 Scanner Brightness 80 150

Ten sets of hand writing were collected. Each set of data was recognized using all 48 configurations
mentioned above. The results were stored in text file format and printed out. The printout were counted
manually to determine the number of correctly recognized characters per set of data.

http://localhost/HFAMI/lpext.dll?f=FifLink&t=document-frame.htm&l=jump&iid=607cc687.1bc10c5d.0.0&nid=3b63#JD_wo2tab31

3.2.3 Results & Analysis

For each configuration that represented the 48 unique combinations of variables, an average percentage of
accuracy was calculated across the ten participants. The data for each variable attribute was divided into
two groups (since each attribute has two options). A line graph was plotted using these two groups. The
difference between these two lines indicates how much the specific attribute affects the recognition
accuracy.

Since data zones and OMR zones have different attributes, their results were analyzed separately. The
results were illustrated with the graphs. It needs to be emphasized for the reader that each graph
represents a different set of configurations of variables to illustrate the effects of each attribute. For
example, Configuration 1 in Figure 3.1 may not be the same as the Configuration 1 in Figure 3.2.
Detailed information for each graph indicating configurations and actual values can be found in the
Appendix.

3.2.3.1 Data Zones Average results

Figure 3.1 shows the average results for each configuration. The table shows the corresponding statistical
values. Descriptions for each configuration are in the Appendix. There are several rises and falls on the
graph. They are caused by different variable attributes. The effects of each attribute will be discussed
individually.

Figure 3.1 Average results for each configuration

http://localhost/HFAMI/lpext.dll?f=FifLink&t=document-frame.htm&l=jump&iid=607cc687.1bc10c5d.0.0&nid=3b65#JD_wo2fig31

Character constraints

Figure 3.2 shows how the attribute Character Constraint affects the recognition accuracy. The first eight
configurations have a restricted constraint while the last eight configurations have a relax constraint.
There is a drop in accuracy (7.06%) when the constraint is changed from restricted to relax. This is quite
reasonable because there are a number of letters which are easily recognized as digits and vice versa (e.
g., 5 & S, 1 & l, 9 and q, etc.). It is also found that the trend appears to be the same for the brightness
variable and the form removal attribute.

Figure 3.2 Configurations with brightness = 150 and no form removal applied

Brightness

Figure 3.3 shows the results of restricted constraint without form removal. It again shows that there is a
decrease (5.54%) in accuracy in the middle of the graph. That is the result of a change of the brightness
attribute from 150 to 80. Similar trends were found using different combinations of character constraint
and form removal attributes.

http://localhost/HFAMI/lpext.dll?f=FifLink&t=document-frame.htm&l=jump&iid=607cc687.1bc10c5d.0.0&nid=3b67#JD_wo2fig32
http://localhost/HFAMI/lpext.dll?f=FifLink&t=document-frame.htm&l=jump&iid=607cc687.1bc10c5d.0.0&nid=3b69#JD_wo2fig33

Figure 3.3 Configurations with restricted constraint and no form removal applied

Form removal

Figure 3.4 shows the results of configurations with restricted constraint. Two series of data are shown on
the graph. One uses Brightness = 150 and the other uses Brightness = 80. Both are showing the same
distribution. The respective decreases (5.33% and 6.31%) in the middle of the graph are caused by the
form removal feature. It was believed that the removal of the form would improve the recognition
accuracy. The results were opposite from what was expected and there is no obvious explanations for this.

http://localhost/HFAMI/lpext.dll?f=FifLink&t=document-frame.htm&l=jump&iid=607cc687.1bc10c5d.0.0&nid=3b6b#JD_wo2fig34

Figure 3.4 Configurations with restricted constraint

Character constraints, brightness and form removal were found to be the only attributes that affect the
recognition accuracy. It is also found that defining the characters per inch attribute would help improving
the recognition accuracy a little (as shown in Table 3.2 below). The de-skew and long line removal
attributes do not affect the recognition accuracy at all.

Table 3.2 Average and Standard Deviation

 CPI 6 0 Difference

 Average 75.11% 73.45% 1.66%

 Std. Dev. 5.92% 5.79% -

Digits with different character constraint

http://localhost/HFAMI/lpext.dll?f=FifLink&t=document-frame.htm&l=jump&iid=607cc687.1bc10c5d.0.0&nid=3b6d#JD_wo2tab32

Figure 3.5 shows the results for digits class only. It uses brightness = 150 without form removal. The
accuracy drops dramatically (20.95%) when the constraint is changed from restricted to relax. The
change is so big because there are only 10 possibilities (0-9) for restricted constraint and there are 36
possibilities (0-9,A-Z) for relax constraint. The other attributes do not affect the accuracy of digits class
at all.

Figure 3.5 Digits class with brightness = 150 and no form removal applied

Special characters with different brightness

The only attribute that affected the accuracy for special characters class was Brightness. Figure 3.6 shows
the results of special character recognition without form removal and de-skew. The recognition accuracy
falls (25%) when the brightness is changed from 150 to 80. This behavior is difficult to explain.

http://localhost/HFAMI/lpext.dll?f=FifLink&t=document-frame.htm&l=jump&iid=607cc687.1bc10c5d.0.0&nid=3b6f#JD_wo2fig35
http://localhost/HFAMI/lpext.dll?f=FifLink&t=document-frame.htm&l=jump&iid=607cc687.1bc10c5d.0.0&nid=3b71#JD_wo2fig36

Figure 3.6 Special character class without form removal and deskew

Upper and lower cases characters

Figure 3.7 shows the recognition accuracy results of upper cases and lower cases. It can be observed that
the accuracy of upper case characters was much better than that of lower cases. One of the reasons may
be that some of the lower case hand writing characters are very similar in shape to each other. For
example, e & a, g & q, r & v, n & h, etc.

http://localhost/HFAMI/lpext.dll?f=FifLink&t=document-frame.htm&l=jump&iid=607cc687.1bc10c5d.0.0&nid=3b73#JD_wo2fig37

Figure 3.7 Comparison of upper cases and lower cases performance

OMR zones

Figure 3.8 shows the results for OMR zones. The results are quite bad. The reason is that OMNItools
was not able to discern if an OMR zone is completely empty. Considering this observation, it assumed
that all the uncertain results are actually unmarked. With this assumption, the results improved
significantly. The modified results are shown on the same figure. The drop in the middle is caused by
enabling the form removal attribute. Again this decrease in recognition accuracy when Form Removal is
activated was not expected.

http://localhost/HFAMI/lpext.dll?f=FifLink&t=document-frame.htm&l=jump&iid=607cc687.1bc10c5d.0.0&nid=3b75#JD_wo2fig38

Figure 3.8 Results for OMR Zones

Optical Character Recognition Suggestions

OMNItools is an acceptable hand writing recognition program that achieved approximately 85%
recognition accuracy during our evaluations. However, careful design of source data and proper choice of
attributes are very important to obtain the best possible results. The following design recommendations
and usage for (1) source form design, (2) source form filling, (3) scanner settings, and (4) OMNItools
settings are suggestions to maximize the recognition accuracy based upon the results of this study.

Design Recommendation:
1. Source form design
2. Source form tilling
3. Scanner setting
4. Omni tools setting

Source Form Design

1. The source form has to be designed carefully. Borders should be used to surround each character of
the input text field. This will control the size and the density of characters (CPI) when data is entered on
the form. Either rectangle boxes or comb fields would be a good choice. These boxes or comb fields
should also be printed in some lightest shade possible. This will allow the boxes or comb fields to be
dropped out easily during the image process.

Source Form Tilling

2. The form should be filled out using black ink pen. It is also suggested to use all capital letters. The
form should be designed to carefully organize the density of data otherwise OMNItools may not be able
to carry out the recognition.

Scanner Setting

3. The image of the source form should be in black and white only. The resolution of the scanner should
be at least 300 dpi. The brightness should be chosen such that the boxes or comb fields (drawn in the
lightest shade possible) are not recognized during the image process. Different scanners will require some
experimenting in order to find the best value of these (or other) available attributes.

Omni Tools Setting

4. When defining the zone definition form, form removal is not suggested to use. Effort should be put on
arranging the zones such that each area contains only either alphabets, or digits, or a small range of
characters. It is also helpful to define the characters per inch for each zone. The results of the OMR zone
should be modified by replacing the uncertain results as unchecked.

3.3 Personal Digital Assistants

The Personal Digital Assistant (PDA) industry is in a state of transition. The first generation of these
devices were greeted with great expectations. They were to provide personal electronic-based tools
designed to improve the productivity of its owner in a pocket-sized package. Unfortunately these
expectations greatly outpaced reality. The root of the problem was this product was developed in a
vacuum then its manufacturers went is search of a consumer market. These first generation devices
attempted to be all things to all users. As it turned out, very few consumers purchased these products and
those that did were disappointed with there performance.

This lack luster performance by PDA sales has caused concern among the manufactures and the software
providers for these products. New processors and operating systems that were planned for release this
year have been delayed indefinitely. Some in the industry have gone so far as to declare the PDA concept
as dead. Based upon our research we feel this is too extreme. There is a market for these devices but they
must take a user-centered approach when developing the new generation of these systems.

The two key features that would make a PDA a useful tool for an AFS ASI are a PDA operating system
that is compatible with their desktop computers (e.g., Windows compatible) and communications
connectivity. Unfortunately both of these capabilities are either not available on today's PDAs or are very
limited. Because of these reasons we did not pursue further investigation of PDA for ASI use at this
time. Table 3.3 contains the specification of several PDAs that we investigated.

These units are roughly seven inches by five inches, less than an inch thick, and weigh about one pound.
They utilize a low power processor, up to 4 MB RAM, one Type II PCMCIA slot and a three inch by four
inch monochrome LCD display. The PDAs use either a pen-based DOS or a proprietary pen-based
operating system. Handwriting recognition is only one element of a pen-based operating system. The
specific user interface metaphors are different but overall, they all utilize the pointing ability of the pen
for navigating through the operating system or interacting with an application. They also capture graphic
images by storing "electronic ink

As this research effort came to a close in March 1995, a second generation of PDAs have started to
emerge. The early press releases describing these new PDAs claim to have addressed the two features
that would make these units useful for an ASI. We will be continuing to keep abreast of these products
through Task Order 03.

Table 3.3 PDA Specifications

 PDA #1 PDA #2 PDA #3 PDA #4 PDA #5

Feature

 Processor Casio Custom ARM 610/20 MHz Motorola Dragon Motorola Dragon NEC VG230/16
 (x86 compatible) 68349/16 MHz 68349/16 Mhz MHz

 HDD PCMCIA PCMCIA PCMCIA PCMCIA PCMCIA
 Storage memory card memory card memory card memory card memory card

 RAM 1MB 1MB 1MB 512 KB 3 MB
 (4 MB ROM) (4 MB ROM) (4 MB ROM) (4 MB ROM) 6 MB Mask

 Desktop PC (option) Mac & Windows PC (option) Mac & Windows Serial LapLink
 Connect Connectivity (opt) Connectivity pack

 Display 3.1" x 4" 3" x 4" 3.0" x 4.5" 3.0" x 4.5" 7.4"
 320 x 256 pixels 336 x 240 pixels 480 x 320 pixels 480 x 320 pixels diag
 640x400 pix

http://localhost/HFAMI/lpext.dll?f=FifLink&t=document-frame.htm&l=jump&iid=607cc687.1bc10c5d.0.0&nid=3b77#JD_wo2tab33
http://localhost/HFAMI/lpext.dll?f=FifLink&t=document-frame.htm&l=namedpopup&iid=607cc687.1bc10c5d.0.0&nid=2238

 Battery Three AA bat., NiCad, NiCad, Six AAA bat., Six AA
 AC/DC Four AA bat. AC/DC AC/DC bat.,
 AC/DC AC/DC

 Operating GEOS, PenRight! Newton Intelligence Magic Cap Magic Cap GEOS
 Env.

 Size, 6.8"x4.2"x1.0" 8.0"x4.0"x1.25" 7.5"x5.75"x1.2" 7.5"x5.2"x1.0" 9.2"x6.4"x
 Weight 0.95 lbs 1.28 lbs 1.7 lbs 1.2 lbs 1.4" 2.4 lbs

 Options Message card, Message card, Message card, Pager LapLink,
 fax modem, fax modem, printer connection, card, Li-Ion Bat.
 printer printer flash storage. keyboard,
 connection, connection, head set,
 flash storage. flash storage. memory card.

Voice recognition is being investigated as a viable means of allowing ASIs to interact with the AFS
database systems. Interaction could be in the form of allowing ASIs to use voice not only to enter data
into the system but to also control other applications on their desktop computers. Speech recognition
systems can be either speaker-dependent or speaker-independent and either continuous-speech or discrete-
speech. Most voice recognition systems today use the speaker-dependent, discrete-speech recognition
technology. The effort by most manufactures of voice recognition systems is directed to developing a
speaker-independent, continuous speech product. In theory, speaker-independent systems would
recognize speech equally well for all users and allow for users to speak in natural, continuous speech. In
reality, recognition accuracy of current systems is less than perfect and typically deemed unacceptable for
most uses. This less than optimal recognition accuracy is due primarily to the difficulty in accounting for
the many variations of the American English dialect. On the other hand, speaker-dependent, discrete-
speech systems can achieve optimal recognition accuracy for one user at a time. This is due to the fact
that discrete-speech systems requires that users speak with a pause between words and perform a series of
exercises to develop a voice template for that specific user. The current effort has concentrated on the
latest products that have a quasi-speaker-independent capability which provides the option to increase the
recognition accuracy with a brief enrollment exercise performed by the user.

Two important factors were being used as the criteria for evaluating these software packages. First, the
appropriate package had to be Personal Computing Manufacturing Community International Association
(PCMCIA) compatible. This feature will allow Voice Recognition Software to run on a Notebook
Computer, thus enabling an ASI to use the software while he/she is out in the field. Second, the
appropriate package must support industry standard programming languages (Visual Basic and C), which
will allow voice recognition to be tightly integrated into existing as well as future AFS systems.

The following is a brief summary of several voice recognition software packages that were investigated.

3.4.1 DragonDictate from Dragon Systems

DragonDictate uses the speaker-independent, discrete speech recognition technology and features a large
active vocabulary which users can totally customize with their own words. A unique 110,000-word
pronunciation dictionary with acoustic models makes adding words easy and ensures immediate
recognition. DragonDictate's special vocabulary optimizer automatically personalizes your vocabulary
while its dynamic adaptation capability adjusts to your voice and work environment. In addition, it
allows you to control various applications by voice.

The major drawback to the DragonDictate voice recognition software is that it is not PCMCIA
compatible. However, it does have a C language Application Programming Interface (API).

3.4.2 Kurzweil Voice for Windows from Kurzweil Applied Intelligence, Inc.

Kurzweil Voice enables users to create, test, and enter data simply by speaking. It also allows navigation,
which drives the Windows Operating System and Windows-based applications on a command and control
basis. Kurzweil Voice incorporates a new version of Kurzweil Artificial Intelligence's (AI) large
vocabulary, speaker-independent, discrete speech recognition technology. It also has on-line knowledge,
including acoustic recognition models and spellings, for at total of 200,000 words.

Although Kurzweil Voice is impressive, it does not have a PCMCIA interface. It neither has a C
language nor a Visual Basic API.

3.4.3 Custom Voice/ICSS from A&G Graphics Interface

Custom Voice/ICCS uses a speaker-independent, continuous speech system. It provides a simple high-
level interface to speech recognition via standard Visual Basic programming tools. Custom voice is
geared towards the developer. It allows a developer to create customized applications quickly, using
industry standard development tools.

Although the system has a Visual Basic API, it only has a 1,000 word vocabulary and it is not PCMCIA
compatible.

3.4.4 IBM VoiceType Dictation for Windows from IBM:

This is a discrete, speaker-dependent voice recognition system. It allows users to create text quickly and
efficiently simply by talking to a desktop personal computer, notebook or subnotebook PC. The software
gives users a basic 30,000 word vocabulary, as well as specialized language models for specific
professions (including radiology, surgery, and law) to speed the accurate conversion of words to text.
VoiceType Dictation creates a model based on each user's voice, which allows the system to accurately
convert speech to text as quickly as 70 to 100 words a minute.

The IBM VoiceType Dictation system was purchased for evaluation because it is PCMCIA compatible
and it has a Visual Basic and C language API. The system was evaluated and the results of the evaluation
are as follows.

The first effort with this system was to perform the enrollment procedures. This generates a voice
template for each individual user that the application uses to aid in recognizing speech from a particular
individual. This also provides an opportunity for the user to become familiar with the capabilities of this
system. Once this was completed, testing began on the recognition accuracy and speed. Finally, the
Speech Software Development Kit (SDK) was investigated to figure out how to incorporate this
technology into existing application in the most unobtrusive fashion.

3.4.4.1 Enrollment Process

The enrollment process for the dictation system is long and thorough. Enrollment is a two part process:
your dictation and the computer's processing of your voice information. During enrollment, VoiceType
gives you a set of sentences to dictate. The system already knows these sentences, so the pronunciation of
each word assists the system to learn how these words sound in the user's voice. It does not appear to be
too burdensome to request that a user go through this process in order to achieve the highest level of voice
recognition. In general, recognition is reasonably quick and highly accurate. In Paced/Command mode,
the recognition engine is usually in the 97% - 99% accuracy range and is very quick. This is due mainly
to the use of a smaller vocabulary and the simple sound matching processing that is done to recognize
words. In Dictation mode, the recognition engine is considerably slower. This engine uses a language
model to narrow down the possible word options and better interpret what is being said; not only on the
actual word sound, but on the context of the sentence. This helps reach higher levels of recognition
accuracy than can be achieved through sound matching alone.

However, the recognition is not flawless. The recognition engine had the most trouble with words
containing multiple syllables. Occasionally, the recognition engine would recognize a single, multiple
syllable word as multiple words. This would cause the recognition can get way off-track using Dictation
mode. Since the engine attempts to use the context of what is being said, a stray word or severely mis-
recognized word can totally change the meaning of a sentence. Thus, the context is incorrect and
recognition engine will briefly cascade off into the wrong direction. Fortunately, this was not a frequent
problem.

Background noise was not a serious problem. Extraneous noises will affect recognition, but there are
solutions to minimize its effect. One option is for the user to create several training sessions. One training
session could be in the quiet environment of an office and another for a noisy outdoor setting. It was
noted that one item that would really help in speaking to the recognition engine is an on/off switch. A
hardware push button could be used to activate the microphone only when this button is depressed. This
will help in eliminating extraneous noise and vocabulary that might be accidentally spoken by the user.

When the there is an error in recognition while dictating, it can be somewhat tedious to correct the
engine. Fortunately, there are programming aids that can be created to assist the user in the correction
process. The effort put forth in enrollment and error correction does pay off in the long run in recognition
accuracy.

Due to complicated modeling that is being done internally, the speech recognition engine uses a large
amount of memory (16MB of RAM) and disk space. The larger the recognition vocabulary, the larger the
storage requirements. In addition, recognition is fairly hard disk drive intensive. This may come into
play in application designed for mobile computers where battery life is a factor.

One final point should be noted. From discussions with IBM technical support, it was discovered that the
system does have a speaker independent model that can be used for simple commands and minor
dictation. This type of speaker independent model is used in the sample programs that came with the
system. Sample games provided called States and Weather were used to evaluate this feature. The
independent models used in these programs were crude but functional. They worked, but their accuracy
percentage is very low; around 60-70 percent. It does not appear that there is any way to use a speaker
independent model, even on a small scale, and bypass the user having to go through the long enrollment
process. Anyway, it appears that IBM does not want developers to use this independent model. They will
not give any information on how to access the independent model through the SDK.

3.4.4.2 Speech Software Development Kit (SDK)

The SDK is very thorough and very complex. We were only able to scratch the surface of all the
functions and capabilities that are accessible through it. There are several good demonstration programs
included in the package. We relied heavily on these to get an initial demonstration program operating.
One feature that was not known earlier was that the SDK will only work in a 32-bit environment. That
means Windows NT or the WIN32S add-on to Windows 3.1 is required. We had trouble creating a
dynamic linked library (DLL) with the speech API that Visual Basic could handle. It was discovered that
VB cannot handle the 32-bit interface required for DLLs using the speech API. Instead an executable file
called TALK was created that was run once the target application was started. This program recognized
all words and passed messages concerning recognition to the target application.

When defining command vocabularies for the user to specify fields to input data, the engine does not
allow for multiple words in a command. In general, any word in the 'Text' vocabulary can be recognized
as a command. The developer must then manually keep track of words said by the user and interpret a
given series of words as needed. There are procedures to add words to the vocabulary along with proper
pronunciation. However, this process is fairly complicated thus was not deeply pursued.

The engine has the capability to replay, any recognized word, in an audio format. In a sense, the user can
speak a particular command and the engine can replay what it recognized. This can be used as a
verification mechanism for the user to know that his words were processed properly.

3.4.4.3 PENS Integration

The task of integrating the engine into the PENS software was a complex one. Due the nature on the
engine, it will not be as simple as dropping a special control into the project in order to integrate speech.
There will some intruding code that will be necessary to process and interpret commands and actions
received from the speech engine. Because of this, there will be an additional level of complexity added to
the software. This may cause some difficulties with programs that are already very complex.

In order to accommodate the existing PENS software, a command structure must be developed that will
allow the user to easily and intuitively set the software's focus on a specific field for input. In addition,
the structure must allow the user to easily and quickly input numbers, letters, or dictated text.

The overlying software structure consisted of a series of message levels such that recognized words are
passed through different levels of functionality within the PENS software. The first level is the upper
level tab navigation. Each form is made up of several tabbed folders. All command words are first
passed to the main tab folder for the current data entry form in use. If a command word for tab control is
recognized, then that causes a change in the currently active tab folder. Otherwise, if the command word
is recognized as a valid data entry section for the currently active tab folder, then that data section is then
given the focus. Code for this data section would then check the command words to see if it was
attempting to recognize a particular field within this section. Once a data entry field is recognized
through a command word , it is then given the focus. At this point, all commands or dictated text are
passed to this control for data input.

All messages are thus passed down this chain until it is recognized as a command or field name, or until it
is used as input into the active field. This cascading message loop was implemented in a sample PENS
application that was developed during this evaluation of the speech software. On this small scale, it
appears that this approach will work and is fairly foolproof. It appears that speech recognition would be
fully integrated into PENS. However, it will require additional work considering the complexity and
shear volume of forms and controls in the PENS software.

3.4.4.4 Conclusions on IBM VoiceType Dictation System

The IBM VoiceType Dictation system is at the cutting edge of recognition based upon the initial
requirements for this type of system. It can provide fast, accurate speech recognition for an data entry and
system control application. However, much work still remains to be done. This system will add a
considerable amount of computational overhead to a given application. It also requires a large amount of
memory and disk space. On the other hand, it can really speed user input; particularly for users that must
input large amounts of information or have difficulties with current 'standard' input devices or with
typing. Recognition of dictated text by the engine is probably faster and more accurate that what 90% of
people can type. If this software is to be used in an application, the primary reason should be to take
advantage of its dictation capabilities. One needs to seriously weigh the benefits of this package with the
need for this product and the effort that is willing to be given to incorporate it into an application. The
demands that this product would put on some mobile computing application might be too great at this
time. We do think though that this product is currently capable of adding a substantial level of usability
to several applications presently being developed by the Performance Enhancement System program.

3.5 Conclusions and Recommendation

The three technology areas that were investigated all demonstrated that they each have a strong potential
to enhance the Performance Enhancement Program. In a follow-on program we are planning to take each
of these technologies and integrate them into the Performance Enhancement System program software
and perform a series of preliminary evaluations.

	Work Order 2 Final Report
	Acknowledgments
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Work Order 2 Final Report (1995)
	Chp 7 Enhancing Aviation Safety Through the Development.......

	IOHHDMLKPEGBAHDMKKKHHAKFDNDAPNGI:
	form1:
	x:
	f1: 0

