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Abstract

The Nationa Airspace System (NAS) in the United States is a complex system involving
many interrelated factors and actors. There are a plethora of diverse human, technical,
environmental, and organizational factors that affect the performance of the NAS. While
numerous methodologies exist for Probabilistic Risk Assessment in complex engineering
systems, these specialized tools are somewhat limited in their use for the integrated modeling of
the technical as well as the human, environmental, and organizational aspects of such systems.
While adaptations and modifications can be made, an analytical method that enables a more
direct modeling of these various factorsis desirable. This paper presents just such an integrated
risk analysis framework that focuses on both the individual and collective human performancein
the maintenance of complex systems.

I ntroduction

Aviation safety risk analysisisvital to the effective operation of the National Airspace
System. While there may be some differences among practitioners and researchers regarding the
terminology used to describerisk, it is generally accepted that risk management is avery
systematic process that essentially involves the steps of risk identification, risk modeling, risk
evaluation, risk mitigation, and action/surveillance (Haimes, 1998; CAN/Q850-97, 1997). Risk
analysis typically comprises the phases of risk identification and risk modeling.

While mathematical definitions of risk involve the probability of an event occurrence
times the severity of that event, oftentimes this purely quantitative approach fails to capture an
inherent part of the existential nature of the notion of risk. What is needed isamore
comprehensive, holistic approach to risk analysis that integrates both the quantitative and
qualitative aspects of this natural phenomenon. Developing such holistic risk concepts aim at
the interplay between technical content and organizational processes.

Reason has developed a descriptive model of accident causation that integrates
individual, task/environmental, and organizational factors (Reason, 1995, 1997). While this
model illustrates the complex, multi-faceted nature of accident causality, it cannot be used in a
normative way sinceit is not linked to an underlying analytical methodol ogy.

The Aviation System Risk Model (ASRM) as described in Luxhgj et a. (2001) provides
an integrated approach to understanding the complex interactions of multiple risk factors. In the
referenced paper, the authors provide a detailed description of the model along with a
maintenance case study. The reader is aso referred to other risk analysis case studies provided
in Luxhgj et a., (1997, 1998, 1999). Accident scenarios, such as loss of control (LOC), have
been developed using the combined approach of analytic generalization from case studies and
from knowledge engineering sessions with subject matter experts (SMES).
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While previous papers focused on how the ASRM may be used to better understand the
role that collective human performance or organizational factors play in aviation safety risk
analysis (see also Choopavang, 2000), this paper focuses more on how the ASRM may be used
to better understand the risks associated with the human role in aviation maintenance and the
importance of defensesin such complex systems.

The Reason M odel

The Reason model (1995, 1997) discussesin detail the multiple hierarchical socio-
technical elements of accident causation. The causal chain starts from organizational processes
and continues through task and environmental conditions that establish preconditions for an
individual at aworkplace. Unfortunately, in some cases the defenses built into the system are
breached and an accident occurs. Individualsin the organization may perform these unsafe acts
but the preconditions that provoke those acts are sometimes due to faulty management decisions
and policies (i.e., latent failures). Figure 1 presents a schematic of the Reason model as used by
the Australian Bureau of Air Safety Investigation with the integrated placement of slips, lapses,
mistakes, and violations.
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Figurel. Reason Model of Accident Causation
(Source: Luxhg et al., 2001)

The Aviation System Risk Model (ASRM)

The ASRM uses the underlying framework of the Reason model coupled with the
influence diagram approach of Bayesian Belief Networks (BBNS) (see Jensen, 1993, 1995) to
understand the interrelationships among causal factors and actors. Organizational factors, along
with task/environmental factors and individual factorsin this general model were mostly adapted
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from the NTSB database factor lookup tables. Elements of Nagel’s (see Wiener and Nagel,
1988) model of Information-Decision-Action were applied to the individual level. The
consequence level was the combination of the United Kingdom's Civil Aviation Authority
(UKCAA, 1997) standardized list of consequences and the suggestions of aviation system
anaysts. The ASRM uses a graphical influence diagram approach to depict the causal relations
existing among multiplerisk factors. Figure 2 displays a high-level schematic of an influence
diagram and the “clustering” of safety risk factors that are consistent with the Reason
framework.
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Figure2. Overview of an Influence Diagram

From amanagerial perspective, an influence diagram is useful for graphically depicting
and initiating understanding of the interrelationships existing among causal factorsin an
accident. Asdepicted in Figure 3, such amodel enables managers to perform sensitivity analysis
or “what-if” analysesto gain an understanding of the effect that, for example, changesin
individual maintenance or operations procedures may have on reducing the relative risks
associated with certain types of accidents.

By integrating conditional probabilities into the influence diagram, a Bayesian Belief
Network (BBN) may be constructed. These influence diagrams graphically portray the complex
interrelationships among the various factors (i.e. variables) in the accident chain. The next step
involves the determination of various “states’ for each factor or variable in the BBN. For
example, a“state” may be that maintenance was either proper or improper as a simplification.
Thethird step in BBN construction involves the development of conditional probabilitiesfor the
various states. The probabilities quantitatively define the contribution to System Risk where
Risk = P(hazard) * P(accident|hazard). Besides indicating interrelationships among the factorsin
the system, the BBNs may also be used to help identify data requirements. Figures 4-5 display
influence diagrams with “ states” under each node and probabilities attached to the states.
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Figure 3. Management Decision Support
(Source: Luxhgj et al., 2001)
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Figure4. Influence Diagram with Probabilities
(Source: Luxhgj et al., 2001)
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Figure5. Influence Diagram with Probabilities (Continued)
(Source: Luxhgj et al., 2001)

Once the BBNs have been constructed, scenario analyses may proceed by entering
“evidence” into the models. “Evidence” removes the uncertainty of a state and the probability
changesto 1.0. Thisevidenceisthen propagated through the network through the use of the
embedded BBN algorithm. Multiple evidence is possible as displayed in Figure 6.
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Figure6. Multiple Evidence
(Source: Luxhgj et al., 2001)
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Figure 7 shows a maintenance scenario analysis focusing on human performance the
nodes of work systems design and maintenance procedures nodes.
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Figure7. Scenario Analysiswith Evidence at the Maintenance and Work System Design nodes
(Source: Luxhg et al., 2001)

The Role of Defenses

There are numerous ways in which defenses may be applied by either an individual actor
and/or an organization. For example, defenses include engineering safety devices and
mechanical and electronic devices (e.g., warning signals, shutdown, pressure release valves,
ground proximity devices, etc.), management policies and standard procedures, training and
briefings, and personal protective gear (e.g., helmets, gas masks, seat belts, etc.).

One of the aviation subject matter experts emphasized that even though a series of
unfortunate events may occur through the active error path, layers of a healthy defense system
could prevent accidents. Figures 8-10 illustrate, according to the algorithms of Bayesian Belief
Networks, that if the state of the defense system is known, and is working properly, then the
relationship between the sequence of errors and the accident is blocked. Hence, the accident is
not likely to happen from this set of causal factors. Nevertheless, it is possible that some other
factors not included in the model, e.g., material failure, as well as maintenance errors may cause
an in-flight structural breakup.
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Figure 8. Unperturbed Probability
(Source: Luxhgj et al., 2001)
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Figure9. Updated Probability After Evidence Entersat the Maintenance node
(Source: Luxhgj et al., 2001)

Figure 10 shows that proper human performance of inspection procedures could act as a
strong defense against the combination of poor quality of maintenance procedures and improper
compliance with maintenance procedures. The relative probability of the structural failureis
significantly reduced.
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Figure 10. Updated Probability After “ Positive” Evidence Entersat the I nspection node
(Source: Luxhg et al., 2001)
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Conclusions

This paper presents an alternative approach to the integrated modeling of both quantitative and
gualitative risk factors in modeling human performance in complex systems. The Aviation
System Risk Model, with its underlying framework of the Reason model of accident causation
and the use of Bayesian Belief Network algorithms provides a flexible, systematic approach to
understanding the interplay of technical content and organizational and human performance in
aviation maintenance. Future research involves the development of a common terminology with
perhaps the Human Factors Analysis and Classification System (HFACS) (see Shappell and
Wiegmann, 2001), building and validation of more accident scenarios, and refinement of atool
to assess both human and organizational factors as well as the impact of technology insertion
upon the performance of aviation maintenance.
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